Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes
نویسندگان
چکیده
It was previously shown (Cohen, F. S., J. Zimmerberg, and A. Finkelstein, 1980, J. Gen. Physiol., 75:251-270) that multilamellar phospholipid vesicles can fuse with decane-containing phospholipid bilayer membranes. An essential requirement for fusion was an osmotic gradient across the planar membrane, with the vesicle-containing (cis) side hyperosmotic with respect to the opposite (trans) side. We now report that unilamellar vesicles will fuse with "hydrocarbon-free" membranes subject to these same osmotic conditions. Thus the same conditions that apply to fusion of multilamellar vesicles with planar bilayer membranes also apply to fusion of unilamellar vesicles with these membranes, and hydrocarbon is not required for the fusion process. If the vesicles and/or planar membrane contain negatively charged lipids, divalent cation (approximately 15 mM Ca++) is required in the cis compartment (in addition to the osmotic gradient across the membrane) to obtain substantial fusion rates. On the other hand, vesicles made from uncharged lipids readily fuse with planar phosphatidylethanolamine planar membranes in the near absence of divalent cation with just an osmotic gradient. Vesicles fuse much more readily with phosphatidylethanolamine-containing than with phosphatidylcholine-containing planar membranes. Although hydrocarbon (decane) is not required in the planar membrane for fusion, it does affect the rate of fusion and causes the fusion process to be dependent on stirring in the cis compartment.
منابع مشابه
Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملVideo fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. Nature of membrane-membrane interactions and detection of release of contents
Video fluorescence microscopy was used to study adsorption and fusion of unilamellar phospholipid vesicles to solvent-free planar bilayer membranes. Large unilamellar vesicles (2-10 microns diam) were loaded with 200 mM of the membrane-impermeant fluorescent dye calcein. Vesicles were ejected from a pipette brought to within 10 microns of the planar membrane, thereby minimizing background fluor...
متن کاملFusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) s...
متن کاملMembrane events involved in myoblast fusion
Myoblast fusion has been studied in cultures of chick embryonic muscle utilizing ultrastructural techniques. The multinucleated muscle cells (myotubes) are generated by the fusion of two plasma membranes from adjacent cells, apparently by forming a single bilayer that is particle-free in freeze-fracture replicas. This single bilayer subsequently collapses, and cytoplasmic continuity is establis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 98 شماره
صفحات -
تاریخ انتشار 1984